
Tentamen Numerical Mathematics 2
July 9, 2010

Duration: 3 hours.
In front of the questions one finds the weights used to determine the final mark.

Problem 1

a. [2] Consider Ax = b with A nonsingular. Compute the absolute and the relative
condition number of this problem. How is the standard condition number of A related
to the latter?

b. [2] Give an example of a problem Ax = b in which the relative error in b propagates
with the standard condition number of A.

c. [3] Make an LU factorization (i) without pivoting, (ii) with partial pivoting and (iii)
with complete pivoting of the matrix in the following system and solve it using the
respective factorizations: [

2 3
4 5

] [
x1

x2

]
=

[
1
3

]
What is the advantage of pivoting?

d. [3] Consider Ax = b and A singular. How can we get an approximate solution of this
equation using the pseudo-inverse of A? Indicate how the pseudo-inverse is construc-
ted. Which property holds for the thus obtained solution x? In which cases is the
pseudo-inverse useful?

Problem 2

a. [3] Let A be real symmetric, and µ, x an approximate eigenpair. Show that

min
λ∈σ(A)

|λ− µ| ≤ ||Ax− µx||2
||x||2

b. [2] Consider the iteration

(A− µI)yn+1 = xn, xn+1 = yn+1/||yn+1||, n = 0, 1, 2, ...

where x0, A and µ are given. Where does the vector xn converge to if all eigenvalues
of A are different? And what determines its speed of convergence?

c. [3] Determine the vector that defines the Householder transformation which turns the
vector [2, 1, 1]T into a vector of the form [α, 0, 0]T .

d. [2] Let A be a square nonsymmetric real matrix, to which we apply the QR method.
Show that after each step of the QR method the eigenvalues of the result matrix are
equal to those of the original matrix. How can we finally read the eigenvalues (can
there be complex eigenvalues)? What is done to speedup the method?

Exam questions continue on other side



Problem 3

a. [2] Why is the Chebyshev polynomial of interest for interpolation and how is it used
there?

b. [3] What is meant by Gauss Legendre and Gauss Chebyshev integration? And what if
we also add the name Lobatto to it? For which degree of polynomials are they exact?

c. [2] Let f(x) be a continuous function on [a,b] and pn(x) a polynomial of degree n.
How can we check whether pn is the best polynomial approximation of f on [a,b]?

d. [2] Explain how Legendre polynomials can be used to derive high-order implicit Runge-
Kutta methods.



Workout Tentamen Numerical Mathematics 2
July 9, 2010

Problem 1

a. [2] Consider Ax = b with A nonsingular. Compute the absolute and the relative
condition number of this problem. How is the standard condition number of A related
to the latter?
Discussed during course. By definition, see Definition 2.1 on page 34, the absolute
condition number is Kabs = maxδb

||δx||
||δb|| and Krel = maxδb

||δx||/||x||
||δb|| = Kabs

||b||
||x|| , where

it holds here that A(x + δx) = b + δb. Subtracting Ax = b we find Aδx = δb. So in

this case Kabs = maxδb
||A−1δb||
||δb|| | ≡ ||A

−1|| and Krel = ||A−1|| ||b||||x|| .
The standard condition number for Ax = b is given by KA = ||A−1||||A||, (3.4) on page
60. This can be found from maximizing the current relative condition number over all
possible b and since there is a unique relation ship between x and b we can formally
also maximize it over all x. So KA = maxbKrel = maxxKrel = ||A−1||maxx

||b||
||x|| =

||A−1||maxx
||Ax||
||x|| = ||A−1||||A||

b. [2] Give an example of a problem Ax = b in which the relative error in b propagates
with the standard condition number of A.
Discussed during course and in lab session 1, see also Exercise 10 on page 123. Let A
be a symmetric 2x2 matrix and Avi = λivi with 0 < λ1 < λ2 and ||vi||2 = 1. Then
consider the problem Ax = v2 and the perturbed one A(x + δx) = v2 + εv1. Clearly

x = v2/λ2 and δx = εv1/λ1. Clearly ||δx||2/||x||2
||δb||2/||b||2 = λ2/λ1. Now here ||A||2 = λ2

and ||A−1|| = 1/λ1. So indeed the relative error in b propagates with the standard
condition number.

c. [3] Make an LU factorization (i) without pivoting, (ii) with partial pivoting and (iii)
with complete pivoting of the matrix in the following system and solve it using the
respective factorizations: [

2 3
4 5

] [
x1
x2

]
=

[
1
3

]
What is the advantage of pivoting?
Discussed in the course, see alos Fig. 3.2 on page 89.
(i) Without pivoting the structure of the LU factorization looks like[

1 0
l21 1

] [
2 3
0 u22

]

Now l21 contains the multiplier, i.e. the factor by which the first row of A must be
multiplied to get a zero at the (2,1) position after subtraction. So l21 = 2. u22 follows
from the elimination step u22 = a22 − l21a12 = −1. Hence we get the following new
formulation of the problem[

1 0
2 1

] [
2 3
0 −1

] [
x1
x2

]
=

[
1
3

]

The solution follows in two steps. First we solve Ly = b. So y1 = 1 and y2 = 3−l21y1 =
3 − 2 · 1 = 1. And next we solve Ux = y, so x2 = −1 and x1 = (y1 − u12x2)/u11 =
(1− 3 · (−1))/2 = 2.
(ii) With partial pivoting we have to look for the maximum in the first column. This



appears to be the second element. We want the maximum value in the column at the
top position. So we interchange the first and second column. With this the problem
turns into. [

4 5
2 3

] [
x1
x2

]
=

[
3
1

]
Now the LU will be of the form[

1 0
l21 1

] [
4 5
0 u22

]

Here l21 = 1/2 and u22 = a22− l21a12 = 3− 1
2 · 5 = 1

2 . Hence we get the following new
formulation of the problem[

1 0
1
2 1

] [
4 5
0 1

2

] [
x1
x2

]
=

[
3
1

]

The solution process is as before and yields of course the same solution.
(iii) With complete pivoting we have to look for the maximum (in abs. value) in the
whole matrix, which is 5. Now we are going to interchange first the two rows, which
gives us the system from the partial pivoting case. Next we have to interchange the
columns and the associated unknowns. This yields the following system.[

5 4
3 2

] [
x2
x1

]
=

[
3
1

]

Now the LU will be of the form[
1 0
l21 1

] [
5 4
0 u22

]

Here l21 = 3/5 and u22 = a22 − l21a12 = 2 − 3
5 · 4 = −2

5 . Hence we get the following
new formulation of the problem[

1 0
3
5 1

] [
5 4
0 3

5

] [
x2
x1

]
=

[
3
1

]

Solving gives again the same solution as before.
The purpose of pivoting is to prevent the propagation of round-off errors.
A few additional remarks:
In partial pivoting all multipliers are less than one in absolute value, which precludes
that the equation that will be adapted is not overwhelmed by the first row. With
complete pivoting this is also the case but now also row wise in U the maximum is
on the diagonal. One could even write U = DŨ where D is the diagonal from U
and hence Ũ has diagonal one. In this case all elements of Ũ are less equal to one in
absolute value. Hence this means that in complete pivoting we also try to limit the
propagation of round-off errors during the back substitution.

d. [3] Consider Ax = b and A singular. How can we get an approximate solution of this
equation using the pseudo-inverse of A? Indicate how the pseudo-inverse is construc-
ted. Which property holds for the thus obtained solution x? In which cases is the
pseudo-inverse useful?
Treated in the course, many similarities with lab session exercise 1c, see also page 116



in the book.
For the pseudo inverse we use the singular value decomposition (SVD). Hence there
exist unitary matrices U and V such that U∗AV = F where F is a diagonal matrix
with on the diagonal the singular values. These are the square root of the eigenvalues
of A∗A. One defines a pseudo inverse of F by a matrix which has the size of the
transform of F and on the diagonal the reciprocals of the singular values. However if
a singular value is less than a user specified tolerance we set this reciprocal to zero.
The pseudo inverse is indicated by F † and this defines also the pseudo inverse of A:
A† = V ∗F †U . The solution of the above system is then given by x = A†b.
If A is singular then in principle one can add any multiple of the singular vector to
x. The pseudo inverse is such that we get the solution which is shortest in 2-norm.
The pseudo inverse is in particular useful for ill-posed systems (see 1b above). By a
suitable choice of the tolerance one can filter out the influence of almost zero singular
values, which can dramatically increase the influence of round off errors. Of course
what is small is relative. We mean small singular values with respect to the biggest
one. The biggest one will be proportional to the norm of A.

Problem 2

a. [3] Let A be real symmetric, and µ, x an approximate eigenpair. Show that

min
λ∈σ(A)

|λ− µ| ≤ ||Ax− µx||2
||x||2

Treated during the course, it is Theorem 5.5 (page 190) from the book.

b. [2] Consider the iteration

(A− µI)yn+1 = xn, xn+1 = yn+1/||yn+1||, n = 0, 1, 2, ...

where x0, A and µ are given. Where does the vector xn converge to if all eigenvalues
of A are different? And what determines its speed of convergence?
Treated during the course (see Section 5.3.2 on page 195), convergence studied during
lab session 2. This is inverse iteration or the inverse power method. This is the
Power method with matrix (A− µI)−1. The method will converge to the eigenvector
corresponding to the biggest eigenvalue of this matrix. This matrix has the same
eigenvectors as A and if λ is an eigenvalue of A then 1/(λ − µ) is an eigenvalue of
this matrix. So the biggest eigenvalue of this matrix is obtained for the eigenvalue
of A which is closest to µ. We know that for the power method the convergence is
determined by ratio of the one but largest eigenvalue divided by the largest eigenvalue.
So if we call the eigenvalue closest to µ λ∗ and the one but closest eigenvalue λ† then
the speed of convergence is given by |λ∗ − µ|/|λ† − µ|.

c. [3] Determine the vector that defines the Householder transformation which turns the
vector [2, 1, 1]T into a vector of the form [α, 0, 0]T .
Treated during the course, see also Section 5.6.1 (page 204) from the book. The
Householder matrix is a mirroring operator defined by H = I − 2

||v||2 vv
T . The vector

v is the normal on the mirroring plane. The Householder matrix is also an orthogonal
matrix so the length of the original vector is the same as the target vector. Hence
α = ±

√
6. The normal of the mirroring plane is then simply the vector v = [2, 1, 1]−

±
√

6[1, 0, 0]. So v = [1−
√

6, 1, 1] will do the job.



d. [2] Let A be a square nonsymmetric real matrix, to which we apply the QR method.
Show that after each step of the QR method the eigenvalues of the result matrix are
equal to those of the original matrix. How can we finally read the eigenvalues (can
there be complex eigenvalues)? What is done to speedup the method?
Treated during the course and in labsession 2, see also Section 5.4, first part of 5.5
and 5.7.1, also see the sheets with results on Nestor where another example is given.
The iteration is as follows QR = An, An+1 = RQ for n = 0, 1, 2, ... with A0 = A.
From this we have that An+1 = QTAnQ which is a similarity transformation. Hence
the eigenvalues of An+1 are the same as those from An and hence from A. If we start
from a real matrix all iterates An stay real and we will converge to the real Schur
form. This has 1x1 and 2x2 blocks on the diagonal and a lower triangular part that
is zero. The 1x1 blocks on the diagonal give the real eigenvalues of the matrix and
the eigenvalues of the 2x2 blocks give the complex eigenvalues.
This method is speeded up by using shifts as followsQR = An−snI, An+1 = RQ+snI.
The eigenvalue which is closest to this shift is converging fastest in the current step
and will occur at the last position of An+1. By picking the last element of the matrix
as shift during the whole iteration, we get a very fast convergence of the eigenvalue
which was closest to the first shift (i.e. the value of the last element of A). Once
convergence of this last element is obtained we continue the process on a deflated
matrix, i.e. we consider the matrix where the last row and column are omitted)

Problem 3

a. [2] Why is the Chebyshev polynomial of interest for interpolation and how is it used
there?
Discussed during course and also in lab session 3, see (8.7),(8.6), and minimax pro-
perty on page 428. The interpolation error is a product of a polynomial, which
has as zeros the interpolation points and a coefficient one in front of the term with
highest degree, and a derivative of the interpolated function at some point in the
interpolation interval divided by a factorial. We can have control over the magnitude
of the polynomial part of the error by choosing the interpolation points approp-
riately. The best would be if it is up to a factor a Chebyshev polynomial, since
maxx∈[−1,1] |Tn(x)/aTn | ≤ maxx∈[−1,1] |pn(x)/apn| for any polynomial of degree n. So in
order to minimize the polynomial part we have to take the zeros of the Chebyshev
polynomial of the same degree and shift them to the interval we interpolate on, and
use these as interpolation points.
An alternative answer could be to mention formula (10.25) and the formula on top of
page 337, which shows that Chebyshev interpolation leads us very close to the best
behavior we can ever have.

b. [3] What is meant by Gauss Legendre and Gauss Chebyshev integration? And what if
we also add the name Lobatto to it? For which degree of polynomials are they exact?
Treated during course (see notes on orthogonal polynomials on Nestor), see also Sec-
tion 10.2 from the book, and lab session 3.
For Gauss integration we like to find the n+ 1 interpolation points such that∫ b

a
w(x)f(x)dx

is exact for a polynomial of as high degree as possible. For the case w(x) ≡ 1
this occurs if we take as interpolation points the zeros of the Legendre orthogonal



polynomial of degree n + 1 shifted to the interval [a,b]. It can be shown that the
polynomial that can still be integrated exactly is of degree 2n+ 1. We use Chebyshev
polynomials if w(x) is 1/

√
1− x2 shifted to the interval [a,b]. The degree of exactness

is then the same as with Legendre polynomials. For Lobatto rules the ends of the
interval are taken as interpolation points. This means that we have to take the zeros
from a linear combination of three orthogonal polynomials which is also zero at the
end points of the integration interval. Hence we have that the attainable degree is
2n− 1.

c. [2] Let f(x) be a continuous function on [a,b] and pn(x) a polynomial of degree n.
How can we check whether pn is the best polynomial approximation of f on [a,b]?
Treated during lecture, see Section 10.8 and lab session 3.
We can look at the error. If it satisfies the equioscillation theorem of Chebyshev then
it is the polynomial of best approximation.

d. [2] Explain how Legendre polynomials can be used to derive high-order implicit Runge-
Kutta methods.
This is not part of the material this year. But for the interested reader see Section
11.8.3. Runge-Kutta methods are used for the integration of initial value problems
y′ = f(t, y). Now we can also write this ODE as yn+1 = yn +

∫ tn+1
tn f(s, y(s))ds. This

has be shown before in Numerical Mathematics 1 and is the basis the explicit and
implicit midpoint methods, the trapezium method and Adams-Bashfort and Adams-
Moulton methods. Now we can apply Gauss Legendre methods to the integral. In
Section .. a number of these methods are listed. In fact implicit midpoint can be
viewed as a Gauss Legendre method with 1 interpolation point and the trapezium
rule as a Gauss Legendre Lobatto rule. Forward and backward Euler are Gauss-
Legendre-Radau methods. Gauss Legendre methods give high-order of accuracy for
few interpolation points (which means few stages in Runge-Kutta method). However
they are strongly implicit. If we have a system of ODEs of order N then we need to
solve an implicit system of order sN where s is the number of stages. This makes
them less popular for the time being.


	tent10a (1)(1)
	AnswersTent10a

